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Detection of hidden regimes in stochastic cyclostationary time series

Volkmar Wirth*
Meteorological Institute, University of Munich, Munich, Germany
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Stationary stochastic time series with nonlinear dynamics can feature a probability density function~PDF!
with distinct local maxima associated with distinct regimes. For nonstationary time series, on the other hand,
such regimes are not necessarily reflected in the shape of the PDF. This occurs when the duration of a regime
is too short for the PDF to adjust, and such a regime is called a ‘‘hidden’’ regime. This paper presents an
algorithm that allows one to detect hidden regimes in cyclostationary stochastic Markovian time series. The
method involves analysis of an appropriately windowed time series, from which the drift and diffusion coef-
ficients of the associated Fokker-Planck equation are estimated. The success of the algorithm is illustrated
using synthetic time series with both additive and multiplicative noise.

DOI: 10.1103/PhysRevE.64.016136 PACS number~s!: 02.50.2r
d
th
ve

i
-

ob
s
o
d

lle
la

ia
ul
pr

i
s

ys

h

e
n

si
te
to
t
s
n
t
in

pl

nal
in

-

are
re-

on,
ity

-

e
in

ve
I. INTRODUCTION

Stochastic time series are generally characterized by a
terministic part on the one hand and a random part on
other hand. Nonlinearity of the deterministic part may gi
rise to phenomena such as multiple regimes and noise
duced transitions@1#. For stationary time series multiple re
gimes are associated with multiple local maxima of the pr
ability density function~PDF!. For nonstationary time serie
the situation is more complex: if a regime is transient and
relatively short duration, the PDF may not have time to a
just in a quasistationary fashion. Such a regime will be ca
a ‘‘hidden’’ regime, because it is not associated with a re
tive maximum of the PDF as in the stationary case.

Cyclostationary processes can be viewed as intermed
between stationary and nonstationary. They are of partic
interest to many natural sciences, since in nature many
cesses are cyclostationary rather than stationary. For
stance, the diurnal cycle or the seasonal cycle often repre
a dominant external forcing in biological or geophysical s
tems. Moreover, the periodT is often knowna priori, be-
cause the process is governed by external parameters w
variation can be measured.

With such applications in mind, we study in this pap
Markovian time series, which are known to be cyclostatio
ary a priori. More specifically we will show that it may be
possible to detect hidden regimes from such time series u
a straightforward technique. The algorithm will be presen
and illustrated by means of examples involving synthetic s
chastic time series. For simplicity we restrict ourselves
time series with one variable, but the extension of the ba
idea toN variables is straightforward. Otherwise the prese
tation is kept rather general, as the method may find poten
applications in a wide range of areas. Remarks concern
the application to real problems including a specific exam
can be found at the end of the paper.

*Present address: Institute for Physics of the Atmosphere, Uni
sity of Mainz, Mainz, Germany.
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II. DEFINITIONS AND BASIC RELATIONS

Consider the dynamics of a continuous one-dimensio
Markovian system governed by the following Langev
equation for its variablex(t),

dx

dt
5G~x,t !1g~x,t !Z~ t !, ~1!

wheret denotes time andZ(t) is Gaussian white noise satis
fying

^Z~ t !&50, ~2!

^Z~ t !Z~ t8!&5Qd~ t2t8!. ~3!

The angles denote an ensemble mean. The functionsG(x,t)
and g(x,t) represent the dynamics of the system and
considered to be externally specified. Additive noise cor
sponds to the special case]g/]x[0, otherwise the noise is
multiplicative. The associated Fokker-Planck equati
which describes the evolution of the probability dens
function p(x,t), reads

]p

]t
52

]

]x
~Ap!1

1

2

]2

]x2
~Bp!. ~4!

Here,A(x,t) andB(x,t) denote the drift and diffusion coef
ficients, respectively, which are defined as

A~x,t !5 lim
t→0

1

t
^x̃~ t1t!2 x̃~ t !&, ~5!

B~x,t !5 lim
t→0

1

t
^@ x̃~ t1t!2 x̃~ t !#2&, ~6!

where x̃(t) is a solution of Eq.~1! with x̃(t)5x ~e.g., see
Ref. @2#!. When Eq.~1! is interpreted in the Ito sense, th
following relations between the coefficients of the Langev
equation~1! and those of the Fokker-Planck equation~4!
hold:

A~x,t !5G~x,t !, ~7!

B~x,t !5Qg2~x,t !. ~8!
r-
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The process is called stationary if neither of the coe
cientsA, B, G, andg explicitly depend on time. In that cas
~4! has a stationary solution satisfying

]J

]x
5const ~9!

with

J~x!5Ap~x!2
1

2

]

]x
@Bp~x!#. ~10!

Assuming that the PDF is well behaved and goes to zer
uxu→`, this solution can be written as

p~x!5ps~x![Ne2U(x), ~11!

whereN is a normalization constant and

U~x!52E
x0

x 2

B~x8!
FA~x8!2

1

2

]B~x8!

]x Gdx8 ~12!

is the so-called stochastic potential~cf. Ref.@1#, The value of
x0 is arbitrary; once fixed it determines the value ofN
through the normalization condition. A local minimum o
U(x) corresponds to a local maximum ofps(x). We define
each local maximum ofps(x) to be associated with a ‘‘re
gime,’’ and multiple local maxima correspond to multip
regimes. Note that the definition of the ‘‘stationary PDF
ps(x) and the definition of regimes involves, via Eqs.~7!,
~8!, ~11!, and ~12!, only the functionsG(x,t) and g(x,t)
representing the underlying dynamics of the system. Th
definitions can be generalized to nonstationary time serie

A process is called cyclostationary, when bothG(x,t) and
g(x,t) are periodic in time with periodT, i.e., when

G~x,t1T!5G~x,t !, ~13!

g~x,t1T!5g~x,t !, ~14!

for all times t. Introducing the phase

f~ t !5mod~ t,T!, ~15!

the coefficientsG, g, A, andB can be expressed as functio
of x andf. Consistent with the above we define

U~x,f!52E
x0

x 2

B~x8,f!
FA~x8,f!2

1

2

]B~x8,f!

]x Gdx8,

~16!

and

ps~x,f![Ne2U(x,f). ~17!

Again, we speak about multiple regimes whenps(x,f) has
multiple local maxima with regard to its variablex. A regime
is called transient when it exists only during a fraction of t
period T. Generally, the PDFp(x,f) of a cyclostationary
process at phasef is not given byps(x,f),
01613
-

as

se
.

p~x,f!Þps~x,f!, ~18!

because Eq.~11! is valid only for stationary processes.
‘‘hidden regime’’ is defined to be a transient local maximu
~with respect tox) of ps(x,f) which isnot associated with a
local maximum of the corresponding PDFp(x,f).

Broadly speaking a hidden regime can be expected to
cur when the internal evolution of the system is too slow
follow the external change. More formally, for smooth
varying G andg we introduce the external time scale

Text5minS G

]G/]t
,

g

]g/]t D ~19!

as the smaller of the two time scales on whichG andg vary,
furthermore the dynamical time scale

Tdyn5minS x

G
,

x2

Qg2D ~20!

as the time scale associated with the internal dynamics of
system. A nontrivial cyclostationary process satisfiesText
<T. The occurrence of hidden regimes can be expected
Text!Tdyn. On the other hand, forText@Tdyn the external
change is much slower than the internal dynamics such
the system adjusts in a quasistationary fashion andp(x,f)
'ps(x,f).

It is the goal of the present paper to describe a met
that allows to uncover hidden regimes in cyclostationa
time series.

III. METHOD

Our method is based on an algorithm published rece
by Siegertet al. @3#. The authors showed that it is possible
compute the drift and diffusion coefficientsA(x) and B(x)
from a stationary time seriesx(t) through recourse to the
Markovian property and the basic definitions~5! and ~6!. In
this approach stationarity allows to replace the ensem
mean by an average over the time series. Here, we gener
the method to cyclostationary time series. A time window

w~f!5H 1, 0<f1,f,f2<1

0, else,
~21!

is defined, wheref1 andf2 are chosen such that the extern
coefficientsG(x,f) andg(x,f) vary only marginally during
the time intervalf1,f,f2, i.e., while the window is open
(w51). As a typical application we envisagew to be equal
to one while the hidden regime exists, and zero otherw
The windowed time seriesxw(t) is defined to be a com
pressed version ofx(t) consisting only of those elements fo
which w51. Althoughxw(t) is not necessarily stationary,
is possible to apply the algorithm of Siegertet al. @3# to
obtain the coefficientsAw(x) and Bw(x). Here, the depen-
dence on phasef has been dropped, since it is margin
owing to the definition of the window. The correspondin
windowed potentialUw(x) using Eq.~12! with A andB re-
6-2
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FIG. 1. Numerical example
with additive noise:~a! Stationary
PDF ps(x) for a time series with
G5Gn from Eq. ~28! with n51
~solid line! and n50 ~dashed
line!; ~b! histogram of the win-
dowed time seriesxw(t) for a cy-
clostationary process that switche
betweenn51 within the window
andn50 outside the window.
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placed byAw and Bw yields information about hidden re
gimes~if present!. The stationary PDF of the windowed tim
series, given by

ps
w~x!5Ne2Uw(x), ~22!

is the hypothetical PDF that one would observe if the ti
series were stationary and characterized by the coeffici
Aw and Bw. Note that the time series does not have to
stationary for Siegertet al.’s algorithm to be valid. The rela
tions ~5!, ~6!, ~7!, and~8! are all valid for general nonstation
ary time series. The only important requirement is to coll
enough statistical information such that the ensemble m
in Eqs.~5! and ~6! can be replaced through an average o
suitable sections of the time series. An average over the w
dowed time series achieves this goal, since by definition
window filters out the same section from each cycle, allo
ing to accumulate the relevant statistical information o
many cycles.

We apply the algorithm to a discrete finite time series, i
to

xi5x~ t i !, i 51,2, . . .n, ~23!

which is meant to approximate the continuous infinite tim
series discussed so far. The time stepDt5t i 112t i is as-
sumed to satisfyDt!min(T,Text,Tdyn) such that the basic
features of the continuous time series are well resolved. F
thermore, we define the time series of increments

dxi5xi 112xi . ~24!
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The discrete time series can be represented as a sequen
points

i→~xi ,dxi ! ~25!

in the two-dimensionalx-dx plane. Appropriately binning
the data intox bins, the windowed coefficientsAw(x) and
Bw(x) are estimated as follows:

Aw~x!'
1

K (
k51

K

dxk
w~x!, ~26!

Bw~x!'
1

K (
k51

K

@dxk
w2Aw~x!#2, ~27!

wheredxw represents the windowed time series of the inc
ments, and the sum extends over theK points within the bin
corresponding to the valuex.

IV. EXAMPLES

We illustrate our method with the help of synthetical
generated time series. In particular we will show how it
lows to detect hidden regimes.

A. Additive noise

Consider a family of stationary processes described
Eq. ~1! with g51, Q50.01 and

G~x!5Gn~x![0.01@~2n21!x2x3#. ~28!
-
e

-
d
.

FIG. 2. Parameters of the win
dowed time series in the exampl
with additive noise:~a! drift coef-
ficient Aw(x), and ~b! diffusion
coefficientBw(x). In both panels,
the solid line delineates the hypo
thetical curve, while the dashe
line represents the reconstruction
6-3
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The corresponding potential~12! becomes

U~x!52
2

QE
x0

x

Gn~x8!dx85
1

Q F1

2
x42~2n21!x2G1const.

~29!

For n511 this function has two local minima atx561,
while for n50 there is only one minimum atx50. Corre-
spondingly, the stationary PDFps(x) computed from Eq.
~11! has two local maxima forn511 @solid line in Fig.
1~a!#, while there is only one local maximum forn50
~dashed line!. In other words, there are two regimes forn
511, but only one regime forn50.

In order to generate a cyclostationary time series w
hidden regimes, we chooseT5200 and switch betweenn
511 andn50 usingn5w and w(f) as in Eq.~21! with
f150.45T andf250.55T. This means that there is one r
gime for 90% of the time, but there are two regimes with
the windowf1,f,f2. The present choice of paramete
yields x;1 and, hence,Tdyn;100. The time scale of the
externally imposed transience owing to the discontinu
changes ofG is estimated asText;f22f150.1T520, i.e.,
Text!Tdyn. We expect that the two regimes within the wi
dow are hidden.

FIG. 3. Cyclostationary time series with additive noise: tr
stationary PDFps

w(x) ~solid!, reconstructed stationary PDF~short
dashes!, and empirical PDFpw(x) ~long dashes! for the windowed
time series.
01613
h
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The discretized version of Eq.~1! is simulated numeri-
cally by performing 5000 cycles with a time step ofDt51,
i.e., by performing 20035000 time steps. As anticipated, th
windowed time seriesxw(t) has a unimodal distribution
pw(x) @Fig. 1~b!#: it does not reveal a hint of bimodality
although the true stationary PDFps

w(x) @solid line in Fig.
1~a!# is clearly bimodal. This discrepancy corresponds to
unequality~18!

We now arrange the discrete values of the windowed ti
series into bins of widthDx50.14 and estimateAw(x) and
Bw(x) using Eqs.~26! and~27!. Only those bins are consid
ered for whichK>5, which restricts the range of values ofx
for which the coefficients can be reconstructed touxu<1.6 in
the present example. As demonstrated in Fig. 2, the rec
structed functions~dashed lines! are in close agreement wit
the hypothetical curves obtained from Eqs.~7! and ~8! and
the a priori knowledge ofG andg ~solid lines!.

Finally we computeps
w(x) from Eq.~22! using the recon-

structed coefficientsAw(x) andBw(x) in the expression for
Uw(x). The reconstructed PDF is displayed as the sh
dashes in Fig. 3. Comparison with the true stationary P
ps

w(x) ~solid line! based on thea priori knowledge ofG and
g demonstrates that the method works successfully: the
modal structure of the reconstructed function is in sharp c
trast to the unimodal empirical PDFpw(x) of the windowed
time series~long dashes in the same figure!. In other words,
the hidden regimes, which are not noticeable in the empir
PDF, have been recovered with the algorithm.

B. Multiplicative noise

As a second example we consider a cyclostationary t
series with the same parameters as above except that

G~x!520.001x ~30!

and

g~x!5gn~x![11
n

2
~e2x2

21! ~31!

with n5w(f). This corresponds to multiplicative noise, an
the bimodality within the window~i.e., forn51) arises from
the inhomogeneity of the noise term. Figure 4~a! depicts the
stationary PDFps(x) inside (n51, solid line! and outside
-

n

FIG. 4. Numerical example
with multiplicative noise:~a! Sta-
tionary PDFps(x) for a time se-
ries with external forcing accord
ing to Eq. ~31! with n51 ~solid
line! and n50 ~dashed line!; ~b!
histogram of the windowed time
seriesxw(t) for a cyclostationary
process which switches betwee
n51 within the window andn
50 outside the window.
6-4



-
e

s

n-

DETECTION OF HIDDEN REGIMES IN STOCHASTIC . . . PHYSICAL REVIEW E64 016136
FIG. 5. Parameters of the win
dowed time series in the exampl
with multiplicative noise:~a! drift
coefficient Aw(x), and ~b! diffu-
sion coefficient Bw(x). In both
panels, the solid line delineate
the hypothetical curve, while the
dashed line represents the reco
struction.
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(n50, dashed line! the window. The histogram ofx values
within the window@Fig. 4~b!# is clearly unimodal; thus, the
two regimes corresponding to the two maxima of the so
curve in Fig. 4~a! are ‘‘hidden.’’

Again, the algorithm~with Dx50.28) successfully recon
structs the parametersAw(x) and Bw(x) ~Fig. 5!. Note in
particular that the inhomogeneity of the diffusion coefficie
Bw(x) in Fig. 5~b! @corresponding to the noise termg(x)# is
reconstructed well. As a consequence, the reconstructed
tionary PDF ~short dashes in Fig. 6! reproduces well the
bimodal behavior of the true stationaryps

w(x) ~solid line!, in
sharp contrast to the empirical PDFpw(x) of the windowed
time series~long dashes!.

C. Statistical error

Obviously the reconstruction method is subject to stati
cal error that increases as the length of the time series
creases. In order to estimate the uncertainty regarding
reconstructed PDF we consider an ensemble of ten time
ries corresponding to ten different realizations ofZ(t) in Eq.
~1!. The curves in Fig. 7 represent the reconstructed stat
ary PDF’sps

w(x) for the example from Sec. IV A.When eac
time series consists of 5000 cycles@Fig. 7~a!#, all curves
clearly show a bimodal behavior indicating the existence

FIG. 6. Cyclostationary time series with multiplicative nois
true stationary PDFps

w(x) ~solid!, reconstructed stationary PD
~short dashes!, and empirical PDFpw(x) ~long dashes! for the win-
dowed time series.
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two ~hidden! regimes~cf. Fig. 3!. On the other hand, when
the length of each time series is reduced to 500 cycles@Fig.
7~b!#, the spread of the curves is significantly larger, a
some of the lines do not represent the proper qualitative
havior. Yet, even here all curves deviate strongly from
empirical PDFpw(x) with its single maximum atx'0 ~long
dashes in Fig. 3~b!, indicating that the latter does not repr
sent the underlying dynamics.

V. GENERALIZATION

A closer examination reveals that our method does
make explicit use of the property of cyclostationarity. It ca
therefore, be applied to more general time series. The
requirement to be met is the existence of a phenome
~like, e.g., the existence of multiple hidden regimes! that
recurs intermittently, but it does not have to recur with
fixed periodT. Furthermore, it is necessary that the occ
rence of the phenomenon is known or can be inferred
some means. Examples may be found in biology or geoph
ics, where certain processes require the presence of sun
or the temperature to exceed a threshold. As long as the
of change ofG and g is small during the time span of th
phenomenon, a windowed time series can be constructe
concatenating the relevant sections of the full time ser
The remaining part of the analysis carries over witho
change.

VI. SUMMARY AND POTENTIAL APPLICATION

A method was presented that allows one to detect hid
regimes in cyclostationary Markovian stochastic time ser
The method involves the construction of appropriately w
dowed time series, from which the drift and diffusion coe
ficients of the associated Fokker-Planck equation are de
mined. The method was demonstrated to work well w
synthetic time series for both additive and multiplicati
noise.

When applying the algorithm to real data one has to ke
in mind the assumptions made in the present work. Th
include the noise to be white and the time series to be l
enough. We studied the sensitivity of our results to the len
of the time series and found that the statistical error m
prevent the analysis if there is not enough data. Whet
available data are sufficient to extract the relevant inform
6-5
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FIG. 7. Reconstructed PDF fo
ten different realizations of the
stochastic time series in the ex
ample with additive noise. The
time series has 50003200 time
steps in ~a!, and 5003200 time
steps in~b!.
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tion is a question that has to be answered on a case to
basis. When the noise is correlated, it may be necessa
reduce the time series by appropriately averaging prior to
analysis. Recently, Egger@4# suggested a method showin
how climatologic data can be investigated in the framew
of the Fokker-Planck equation. A similar method may tu
out helpful in the current context. Furthermore, the meth
requires the definition of a ‘‘window.’’ Often this is straigh
forward, like in the example given below. In other cas
however, it may not be entirely clear which part of the cyc
to include into the window. In such cases experimentat
with different windows may prove necessary and useful.

As mentioned in the introduction, we envisage a num
of interesting applications in biology and geophysics. As
example, which is relevant to regional climate, we note
interaction between soil moisture and precipitation. Dur
most of the year, precipitation is determined by the atm
spheric larger-scale circulation, and soil moisture simply
sponds in a passive manner. However, during the sum
season precipitation is controlled by moist convection, wh
gy
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in turn is significantly influenced by soil moisture. This in
teraction may lead to multiple regimes under certain con
tions ~Rodriguez-Iturbeet al., @5#; Entekhabiet al., @6#!. The
system may, therefore, be associated with multiple regim
during the summer season~a dry regime and a moist regime!,
while during the rest of the year only one regime prevails
the duration of the summer season is short enough and i
intrinsic dynamical time scales of the governing mechanis
~i.e., those leading to changes in soil moisture! are slow
enough, these multiple regimes may be hidden. In ot
words, the empirical PDF of soil moisture during summ
would be unimodal although the underlying processes fa
either a dry or a moist regime. The windowed time series
the present example consists of the summer months du
which the precipitation is dominated by moist convectio
Our method allows one, in principle, to detect these hidd
dry and moist regimes providing information about the p
cesses responsible for soil moistening and drying. This in
mation cannot be inferred from simpler statistics such as
empirical PDF.
e-
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