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Detection of hidden regimes in stochastic cyclostationary time series

Volkmar Wirth*
Meteorological Institute, University of Munich, Munich, Germany
(Received 9 October 2000; published 28 June 2001

Stationary stochastic time series with nonlinear dynamics can feature a probability density fURE®N
with distinct local maxima associated with distinct regimes. For nonstationary time series, on the other hand,
such regimes are not necessarily reflected in the shape of the PDF. This occurs when the duration of a regime
is too short for the PDF to adjust, and such a regime is called a “hidden” regime. This paper presents an
algorithm that allows one to detect hidden regimes in cyclostationary stochastic Markovian time series. The
method involves analysis of an appropriately windowed time series, from which the drift and diffusion coef-
ficients of the associated Fokker-Planck equation are estimated. The success of the algorithm is illustrated
using synthetic time series with both additive and multiplicative noise.
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I. INTRODUCTION II. DEFINITIONS AND BASIC RELATIONS

Consider the dynamics of a continuous one-dimensional

Stochastic time series are generally characterized by a d&arkovian system governed by the following Langevin
terministic part on the one hand and a random part on th&duation for its variable(t),
other hand. Nonlinearity of the deterministic part may give dx
rise to phenomena such as multiple regimes and noise in- q
duced transition$l]. For stationary time series multiple re-
gimes are associated with multiple local maxima of the probwheret denotes time and(t) is Gaussian white noise satis-
ability density function(PDF). For nonstationary time series fying
the situation is more complex: if a regime is transient and of

G(x, 1) +g(x, 1) Z(t), @

relatively short duration, the PDF may not have time to ad- (zv)=0, 2
just in a quasistationary fashion. Such a regime will be called (Z(H)Z(t"))=Q8(t—t"). ©)
a “hidden” regime, because it is not associated with a rela-

tive maximum of the PDF as in the stationary case. The angles denote an ensemble mean. The funcGqmst)

Cyclostationary processes can be viewed as intermediafd’d 9(x,t) represent the dynamics of the system and are
considered to be externally specified. Additive noise corre-

petween stationary and nopsta’uonary. They are of part'CUIasfponds to the special casg/dx=0, otherwise the noise is
interest to many natural sciences, since in nature many prq iinjicative. The associated Fokker-Planck equation,

cesses are cyclostationary rather than stationary. For iRghich describes the evolution of the probability density
stance, the diurnal cycle or the seasonal cycle often represefifnction p(x,t), reads

a dominant external forcing in biological or geophysical sys-
tems. Moreover, the period is often knowna priori, be- ap d 1 4°
cause the process is governed by external parameters whose e 5(Ap)+ 2 Q(Bp)' 4)
variation can be measured.

With such applications in mind, we study in this paperHere,A(x,t) andB(x,t) denote the drift and diffusion coef-
Markovian time series, which are known to be cyclostation-ficients, respectively, which are defined as
ary a priori. More specifically we will show that it may be

possible to detect hidden regimes from such time series using A(x,t) = IimE&(H 7) —?((t)), (5)
a straightforward technique. The algorithm will be presented 7—07T

and illustrated by means of examples involving synthetic sto-

chastic time series. For simplicity we restrict ourselves to B(x,t)= |im£<[’)2(t+7) —7<(t)]2>, (6)
time series with one variable, but the extension of the basic 0T

idea toN variables is straightforward. Otherwise the presen- ~ 5
tation is kept rather general, as the method may find potentiavhere x(t) is a solution of Eq(1) with x(t)=x (e.g., see
applications in a wide range of areas. Remarks concerningef. [2]). When Eq.(1) is interpreted in the Ito sense, the

the application to real problems including a specific exampldollowing relations between the coefficients of the Langevin
can be found at the end of the paper. equation(1) and those of the Fokker-Planck equatiG$)
hold:

A(X,1)=G(x,1), )
*Present address: Institute for Physics of the Atmosphere, Univer-
sity of Mainz, Mainz, Germany. B(x,t)=Qg?(x,t). (8)
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The process is called stationary if neither of the coeffi- P(X,P) # Ps(X, d), (18
cientsA, B, G, andg explicitly depend on time. In that case
(4) has a stationary solution satisfying because Eq(11) is valid only for stationary processes. A

“hidden regime” is defined to be a transient local maximum

ﬂ — const 9) (with respect tox) of ps(X, ) which isnotassociated with a
X local maximum of the corresponding PKX, ¢).
_ Broadly speaking a hidden regime can be expected to oc-
with cur when the internal evolution of the system is too slow to
14 follow the external change. More formally, for smoothly
J(x)=Ap(X)— 5 5[Bp(x)]. (100  varyingG andg we introduce the external time scale
: : [ G g
Assuming that the PDF is well behaved and goes to zero as T ex=Min Gl m (29

|x|— o, this solution can be written as
p(x)=ps(x)=Ne VX (12) as the smaller of the two time scales on whilandg vary,
S ' furthermore the dynamical time scale
where N is a normalization constant and

[x X
= xB(x") §

G'Qg

( 5 ox dx (12

as the time scale associated with the internal dynamics of the
is the so-called stochastic potentief. Ref.[1], The value of system. A nontrivial cyclostationary process satisfigs;
Xo is arbitrary; once fixed it determines the value &f =<T. The occurrence of hidden regimes can be expected for
through the normalization condition. A local minimum of T¢<Tgy,. On the other hand, foll¢,> Ty, the external
U(x) corresponds to a local maximum pf(x). We define change is much slower than the internal dynamics such that
each local maximum opg(x) to be associated with a “re- the system adjusts in a quasistationary fashion pfd ¢)
gime,” and multiple local maxima correspond to multiple =~ pg(X, ).
regimes. Note that the definition of the “stationary PDF” It is the goal of the present paper to describe a method
ps(x) and the definition of regimes involves, via Ed3), that allows to uncover hidden regimes in cyclostationary
(8), (11), and (12), only the functionsG(x,t) and g(x,t) time series.
representing the underlying dynamics of the system. These

definitions can be generalized to nonstationary time series. . METHOD
A process is called cyclostationary, when b&t{x,t) and
g(x,t) are periodic in time with period, i.e., when Our method is based on an algorithm published recently
by Siegertet al.[3]. The authors showed that it is possible to
G(x,t+T)=G(x,t), (13)  compute the drift and diffusion coefficienfg(x) and B(x)
from a stationary time series(t) through recourse to the
g(x,t+T)=g(x,t), (14 Markovian property and the basic definitio® and(6). In
this approach stationarity allows to replace the ensemble
for all timest. Introducing the phase mean by an average over the time series. Here, we generalize
the method to cyclostationary time series. A time window
$(t)=modt,T), (15
<< =
the coefficientss, g, A, andB can be expressed as functions w( )= 1, 0sdi<d<dp=l 21)
of x and ¢. Consistent with the above we define 0, else,
x 2 1 9B(X', ) is defined, whereb; and¢, are chosen such that the external
U(x,¢)=— f - [A(X'wﬁ)—z —ax|9X coefficientsG(x, ¢) andg(x, ¢) vary only marginally during
x0B(X', ) the time intervalg ;< ¢ < ¢», i.e., while the window is open
(16) (w=1). As a typical application we envisageto be equal
and to one while the hidden regime exists, and zero otherwise.

The windowed time seriex"(t) is defined to be a com-
Ps(X, p)=Ne V%), (17) pressed version of(t) consisting only of those elements for
whichw=1. Althoughx*(t) is not necessarily stationary, it
Again, we speak about multiple regimes wheyix,¢) has is possible to apply the algorithm of Siegestal. [3] to
multiple local maxima with regard to its variableA regime  obtain the coefficientd\"(x) and B"(x). Here, the depen-
is called transient when it exists only during a fraction of thedence on phase has been dropped, since it is marginal
period T. Generally, the PDRp(x,¢) of a cyclostationary owing to the definition of the window. The corresponding
process at phas¢ is not given byps(X, ¢), windowed potential"(x) using Eq.(12) with A andB re-
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Y ek ) \ £ 400 | G=_GV from Eqg. (28) with v=1
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%‘ 30 F o 3000 ¢ line); (b) histogram of the win-
© 2; 1 - gsgg dowed time serieg"(t) for a cy-

° s 1500 clostationary process that switches
2 0k 1000 | betweenv=1 within the window

.05 £ 500 £ and »=0 outside the window.
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T 5 o value Y
placed byA" and B" yields information about hidden re- The discrete time series can be represented as a sequence of
gimes(if presen}. The stationary PDF of the windowed time points
series, given by
i—(x;,dx;) (29
Y(x)=Ne V"), 22 . _ _ . o

Ps (x) 22 in the two-dimensionak-dx plane. Appropriately binning
is the hypothetical PDF that one would observe if the timethv‘va data intox bins, the Wlndovyed coefficientd”(x) and
series were stationary and characterized by the coefficienf’ (X) are estimated as follows:
A" and B". Note that the time series does not have to be 1
stationary for Siegert al’s algorithm to be valid. The rela- AY(x) ~ — dx 26
tions(5), (6), (7), and(8) are all valid for general nonstation- ) K IZI %), (26)
ary time series. The only important requirement is to collect
enough statistical information such that the ensemble mean 1 X
in Egs.(5) and(6) can be replaced through an average over BY(x)~ K > [dx'—A%Y(x)]?, (27
suitable sections of the time series. An average over the win- k=1

dowed time series achieves this goal, since by definition th%vheredxw represents the windowed time series of the incre-

window filters out the same section from each cycle, allow_ments, and the sum extends over Kigoints within the bin

ing to accumulate the relevant statistical information Overcorresponding to the value
many cycles.

We apply the algorithm to a discrete finite time series, i.e.,
to IV. EXAMPLES

We illustrate our method with the help of synthetically
generated time series. In particular we will show how it al-
lows to detect hidden regimes.

xi=x(t;), i=12,...n, (23

which is meant to approximate the continuous infinite time
series discussed so far. The time step=t;,,—t; is as-

sumed to satisfyAt<min(T, Tey, Tayn) Such that the basic A. Additive noise
features of the continuous time series are well resolved. Fur- Consider a family of stationary processes described by
thermore, we define the time series of increments Eq. (1) with g=1, Q=0.01 and
A% =X 41— X . (24 G(x)=G,(x)=0.01(2v—1)x—x3]. (28)
Y Y () IS
i | e e
210 .009

FIG. 2. Parameters of the win-
dowed time series in the example
with additive noise{(a) drift coef-
ficient A%(x), and (b) diffusion
coefficientB"(x). In both panels,
the solid line delineates the hypo-
thetical curve, while the dashed
line represents the reconstruction.
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b8 Ty The discretized version of Ed1) is simulated numeri-
55 E 3 cally by performing 5000 cycles with a time step &f=1,

Set i.e., by performing 208 5000 time steps. As anticipated, the
45 ¢ windowed time seriex"(t) has a unimodal distribution
42 E p%(x) [Fig. 1(b)]: it does not reveal a hint of bimodality,
Sl although the true stationary PD8Y(x) [solid line in Fig.
o 1(a)] is clearly bimodal. This discrepancy corresponds to the
zz unequality(18)

. We now arrange the discrete values of the windowed time
'm ] series into bins of widtlAx=0.14 and estimat&"'(x) and

'05 i B"(x) using Egs(26) and(27). Only those bins are consid-

' T ered for whichK=5, which restricts the range of valuesof
0T NS DO NS NT QDS N O for which the coefficients can be reconstructedxes 1.6 in

T T value T the present example. As demonstrated in Fig. 2, the recon-

probability density

FIG. 3. Cyclostationary time series with additive noise: true structed function¢dashed lingsare in close agreement with

stationary PDFpY(x) (solid), reconstructed stationary PDEhort the hypothetical curves obtained from E¢#) and (8) and

dashey and empirical PDRp"(x) (long dashesfor the windowed the ‘f" priori knowledgev(v)G andg (solid Iines)_.
time series. Finally we computep¢ (x) from Eqg.(22) using the recon-

structed coefficient&"(x) andB"™(x) in the expression for
UY(x). The reconstructed PDF is displayed as the short
dashes in Fig. 3. Comparison with the true stationary PDF
pd(x) (solid line) based on tha priori knowledge ofG and
g demonstrates that the method works successfully: the bi-
modal structure of the reconstructed function is in sharp con-
(290  trast to the unimodal empirical PDF"(x) of the windowed
time serieglong dashes in the same figurén other words,
For v=+1 this function has two local minima at=+1, the hidden regimes, which are not noticeable in the empirical
while for »=0 there is only one minimum a=0. Corre- PDF, have been recovered with the algorithm.
spondingly, the stationary PDBg(xX) computed from Eq.
(11) has two local maxima fow=+1 [solid line in Fig. B. Multiplicative noise
1(a)], while there is only one local maximum for=0
(dashed ling In other words, there are two regimes for
=+1, but only one regime for=0.
In order to generate a cyclostationary time series with G(x)=—0.00X (30
hidden regimes, we choose=200 and switch between
=+1 andv=0 usingv=w andw(¢) as in Eq.(21) with and
¢,=0.45T and ¢,=0.55T. This means that there is one re-
gime for 90% of the time, but there are two regimes within _ _ Vo2
the window ¢1< << ¢,. The present choice of parameters 900 =g,(x)=1+ E(e —b (31)
yields x~1 and, henceTy,~100. The time scale of the
externally imposed transience owing to the discontinuousvith v=w(¢). This corresponds to multiplicative noise, and
changes ofG is estimated a3 ,~ ¢,— $,=0.1T=20, i.e., the bimodality within the windowi.e., for v=1) arises from
Texi<Tgyn. We expect that the two regimes within the win- the inhomogeneity of the noise term. Figur@4depicts the

The corresponding potentigl2) becomes

2 (x 1
U(x)=—6 GV(X’)dx’=6
Xo

1
§X4—(2v—1)X2 + const.

As a second example we consider a cyclostationary time
series with the same parameters as above except that

dow are hidden. stationary PDFp(x) inside (v=1, solid line and outside
(a) .28 T T T T T T T T (b)BMJ@

26 ] 2000 | FIG. 4. Numerical example
. g; ] with multiplicative noise:(a) Sta-
= ) 6000 1 tionary PDFpg(x) for a time se-
g 8| > se00 | ries with external forcing accord-
‘; }Z g wml ing to Eq. (31) with »=1 (solid
2 Lf & line) and =0 (dashed ling (b)
% ek & 300 | histogram of the windowed time
o s 000 | seriesx"(t) for a cyclostationary
g, gi process which switches between

=1 ] 1000 | v=1 within the window andv

e’ Lo h ) — e T =0 outside the window.
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FIG. 5. Parameters of the win-
dowed time series in the example
with multiplicative noise:(a) drift
coefficient A¥(x), and (b) diffu-
sion coefficientB"¥(x). In both
panels, the solid line delineates
the hypothetical curve, while the
.02 | " dashed line represents the recon-
.001 | . struction.
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(v=0, dashed linpthe window. The histogram of values  two (hidder) regimes(cf. Fig. 3. On the other hand, when
within the window[Fig. 4b)] is clearly unimodal; thus, the the length of each time series is reduced to 500 cyldHes

two regimes corresponding to the two maxima of the solig/(b)], the spread of the curves is significantly larger, and
curve in Fig. 4a) are “hidden.” some of the lines do not represent the proper qualitative be-

Again, the algorithmwith Ax=0.28) successfully recon- havic')(. Yet, even herg a]l curves devigte strongly from the
structs the parametes”(x) and BY(x) (Fig. 5. Note in emplrlcql PDFpW(X)_ w!th its single maximum ax~0 (long
particular that the inhomogeneity of the diffusion coefficientd@shes in Fig. @), indicating that the latter does not repre-
BY(x) in Fig. 5(b) [corresponding to the noise temix)]is  Sent the underlying dynamics.
reconstructed well. As a consequence, the reconstructed sta-
tionary PDF (short dashes in Fig.)6reproduces well the V. GENERALIZATION
bimodal behavior of the true stationgpy/(x) (solid line), in
sharp contrast to the empirical Pp¥(x) of the windowed
time serieglong dashes

A closer examination reveals that our method does not
make explicit use of the property of cyclostationarity. It can,
therefore, be applied to more general time series. The key
requirement to be met is the existence of a phenomenon
C. Statistical error (like, e.g., the existence of multiple hidden regimdisat

Obviously the reconstruction method is subject to statisti/€CUrS intermittently, but it does not have to recur with a

cal error that increases as the length of the time series déxed periodT. Furthermore, it is necessary that the occur-

creases. In order to estimate the uncertainty regarding thgnce of the phenomenon is known or can be inferred by

reconstructed PDF we consider an ensemble of ten time Sé_omerzneans. tE>_<ampIes may be fo_un?hm biology or gfeopf}ysr-]t
ries corresponding to ten different realizationszgf) in Eq. ~ 'CS; WNEre€ CErtain processes require the presence ot sunfig

(1). The curves in Fig. 7 represent the reconstructed statiorf2! the temperature to exceed a threshold. As long as the rate

ary PDF’spy/(x) for the example from Sec. IV A.When each of change ofG anq g1s sma_ll dunng the time span of the
. ; : . phenomenon, a windowed time series can be constructed by
time series consists of 5000 cyclgBig. 7(a)], all curves

. LRI ; oncatenating the relevant sections of the full time series.
clearly show a bimodal behavior indicating the existence o o ; . ;
he remaining part of the analysis carries over without

g change.
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VI. SUMMARY AND POTENTIAL APPLICATION

A method was presented that allows one to detect hidden
regimes in cyclostationary Markovian stochastic time series.
] The method involves the construction of appropriately win-
1 dowed time series, from which the drift and diffusion coef-

1 ficients of the associated Fokker-Planck equation are deter-
mined. The method was demonstrated to work well with
synthetic time series for both additive and multiplicative
noise.

When applying the algorithm to real data one has to keep
in mind the assumptions made in the present work. These
include the noise to be white and the time series to be long

FIG. 6. Cyclostationary time series with multiplicative noise: €nough. We studied the sensitivity of our results to the length
true stationary PDFpY(x) (solid), reconstructed stationary PDF of the time series and found that the statistical error may
(short dashesand empirical PDR"(x) (long dashesfor the win-  prevent the analysis if there is not enough data. Whether
dowed time series. available data are sufficient to extract the relevant informa-

probability density
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(a) (b) .

rg *E FIG. 7. Reconstructed PDF for
g g ten different realizations of the
N © stochastic time series in the ex-
g :T ample with additive noise. The
% ',g time series has 5000200 time
2 2 steps in(a), and 50 200 time
a &, steps in(b).

TT T T %k Yalué R

tion is a question that has to be answered on a case to caseturn is significantly influenced by soil moisture. This in-
basis. When the noise is correlated, it may be necessary teraction may lead to multiple regimes under certain condi-
reduce the time series by appropriately averaging prior to théons (Rodriguez-Iturbeet al, [5]; Entekhabiet al,, [6]). The
analysis. Recently, Egge#] suggested a method showing system may, therefore, be associated with multiple regimes
how climatologic data can be investigated in the frameworkduring the summer seas@dry regime and a moist regime
of the Fokker-Planck equation. A similar method may turnwhile during the rest of the year only one regime prevails. If
out helpful in the current context. Furthermore, the methodhe duration of the summer season is short enough and if the
requires the definition of a “window.” Often this is straight- intrinsic dynamical time scales of the governing mechanisms
forward, like in the example given below. In other cases,(i.e., those leading to changes in soil moisjuege slow
however, it may not be entirely clear which part of the cycleenough, these multiple regimes may be hidden. In other
to include into the window. In such cases experimentatiorwords, the empirical PDF of soil moisture during summer
with different windows may prove necessary and useful. would be unimodal although the underlying processes favor
As mentioned in the introduction, we envisage a numbeeither a dry or a moist regime. The windowed time series in
of interesting applications in biology and geophysics. As arthe present example consists of the summer months during
example, which is relevant to regional climate, we note thewhich the precipitation is dominated by moist convection.
interaction between soil moisture and precipitation. DuringOur method allows one, in principle, to detect these hidden
most of the year, precipitation is determined by the atmo-dry and moist regimes providing information about the pro-
spheric larger-scale circulation, and soil moisture simply recesses responsible for soil moistening and drying. This infor-
sponds in a passive manner. However, during the summenation cannot be inferred from simpler statistics such as the
season precipitation is controlled by moist convection, whichempirical PDF.
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